and stated clearly. Units of quantities used/calculated must be stated clearly.)

[8]

Unit-T

- (a) Derive expressions for the fields in rectangular waveguide in case of Transverse Magnetic (TM) wave. [8]
 - Draw the field lines for:
 - TE₁₀ mode
 - TM₁₁ mode
 - (iii) TE₂₀ mode
 - (iv) TM₂₁ mode in a rectangular waveguide. [8]

- 1. (a) Explain the following terms with respect to microstrip transmission lines:
 - Effective dielectric constant.
 - (ii) Characteristic impedance.
 - (iii) Losses in microstrip lines.
 - (iv) Electric & magnetic field lines. [8]
 - Find the characteristics impedance of microstrip line that is fabricated on dielectric substrate having $\varepsilon_r = 3.2$, w = 1.78mm, h = 0.762mm and operating frequency is 5 GHz.

(Unit-'II')

2. (a) Find the z-parameter of the two-part T-network shown in figure:

(b) A certain two-port network is measured and the following scattering matrix is obtained:

$$[S] = \begin{bmatrix} 0.1 \angle 0 & 0.8 \angle 90^{\circ} \\ 0.8 \angle 90^{\circ} & 0.2 \angle 0 \end{bmatrix}$$

From this data, determine whether the network is reciprocal or lossless. [8]

OR

- 2. (a) Does a nonreciprocal lossless network always have a purely imaginary impedance matrix? [8]
 - (b) Find the S-parameter for the series load shown below. Assume a characteristic impedance z₀.

[8]

[8]

(Unit-'III')

- 3. (a) Write s-matrix and explain the working of magic tees.
 - (b) Draw the directional coupler and explain return loss, directivity, coupling and isolation. [8]

- 3. (a) Design a 3dB branch line coupler. Draw its layout using microstrip line. [8]
 - (b) Draw the Wilkinson power divider and its layout using microstrip line.

Unit-TV

- 4. (a) Describe the microwave power measurement.[8]
 - (b) Calculate the VSWR when the distance between half power points is 11nm. Assume the wave is in dominant mode and given that the dimension of the guide are 4×2.5 cm and frequency is 10 GHz.

- 4. (a) Explain the measurement using network analyzer.
 - (b) What is low VSWR? Describe its measurement. [8]

(Unit-V)

- 5. (a) List the basic materials for MMICs. [8]
 - (b) Describe the MMIC techniques. [8]

OR

- 5. (a) Describe the discrete, integrated, and monolithic microwave integrality circuits. [8]
 - Discuss the capacitor film development. [8]